Текст подпрограммы и версий aeg2c_p.zip , aeg2z_p.zip |
Тексты тестовых примеров taeg2c_p.zip , taeg2z_p.zip |
Вычисление всех собственных значений комплексной матрицы QR - алгоpитмом со сдвигом.
Исходная матрица приводится унитарными преобразованиями к верхней форме Хессенберга, которая затем используется для вычисления собственных значений.
Дж.Х.Уилкинсон, Алгебраическая проблема собственных значений, "Наука", М., 1970.
procedure AEG2C(N :Integer; var AR :Array of Real; var AI :Array of Real; var EVR :Array of Real; var EVI :Array of Real; IEER :Integer);
Параметры
N - | порядок исходной матрицы (тип: целый); |
AR, AI - | вещественные двумерные массивы размерности N на N, содержащие соответственно действительную и мнимую части исходной матрицы; |
EVR - EVI | вещественные одномерные массивы размерности N, содержащие соответственно действительную и мнимую части вычисленных собственных значений; |
IERR - | целая переменная, служащая для сообщения об ошибках, обнаруженных в ходе работы подпрограммы; значение IЕRR полагается равным номеру собственного значения, для вычисления которого потребовалось более 30 итераций, при этом собственные значения с индексами IЕRR + 1, IЕRR + 2, ..., N вычислены правильно. |
Версии
AEG2Z - | вычисление всех собственных значений комплексной матрицы с расширенной (Extended) точностью. Массивы АR, АI, ЕVR, ЕVI имеют тип Extended. |
Вызываемые подпрограммы
UTAE10 - | подпрограмма выдачи диагностических сообщений при работе подпрограмм АЕG2С и АЕG2Z. |
Замечания по использованию
Подпрограммы АЕG2С(Z) не сохраняют исходную матрицу. | |
Подпрограмма АЕG2C использует служебную подпрограмму AA02C. Подпрограмма АЕG2Z использует служебные подпрограммы AA01Z, AA02Z, AA03Z. |
Unit TAEG2C_p; interface uses SysUtils, Math, { Delphi } Lstruct, Lfunc, UtRes_p, AEG2C_p; function TAEG2C: String; implementation function TAEG2C: String; var J,I,IERR :Integer; EVR :Array [0..3] of Real; EVI :Array [0..3] of Real; const AR :Array [0..15] of Real = ( 1.0,0.42,0.54,0.66,0.42,1.0,0.32,0.44,0.54,0.32, 1.0,0.22,0.66,0.44,0.22,1.0 ); AI :Array [0..15] of Real = ( 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0,0.0 ); begin Result := ''; { результат функции } Result := Result + #$0D#$0A; Result := Result + Format('%s', [' ВСЕ СОБСТВЕННЫЕ ЗНАЧЕНИЯ КОМПЛЕКСНОЙ MATPИЦЫ' + #$0D#$0A]); Result := Result + Format('%s',[' AR' + #$0D#$0A]); for I:=1 to 4 do begin for J:=1 to 4 do begin Result := Result + Format('%20.16f ',[AR[(I-1)+(J-1)*4]]) + #$0D#$0A; end; end; Result := Result + #$0D#$0A; Result := Result + #$0D#$0A; Result := Result + Format('%s',[' AI' + #$0D#$0A]); for I:=1 to 4 do begin for J:=1 to 4 do begin Result := Result + Format('%20.16f ',[AI[(I-1)+(J-1)*4]]) + #$0D#$0A; end; end; Result := Result + #$0D#$0A; AEG2C(4,AR,AI,EVR,EVI,IERR); Result := Result + #$0D#$0A; Result := Result + Format('%s',[' AR' + #$0D#$0A]); for I:=1 to 4 do begin for J:=1 to 4 do begin Result := Result + Format('%20.16f ',[AR[(I-1)+(J-1)*4]]) + #$0D#$0A; end; end; Result := Result + #$0D#$0A; Result := Result + #$0D#$0A; Result := Result + Format('%s',[' AI' + #$0D#$0A]); for I:=1 to 4 do begin for J:=1 to 4 do begin Result := Result + Format('%20.16f ',[AI[(I-1)+(J-1)*4]]) + #$0D#$0A; end; end; Result := Result + #$0D#$0A; Result := Result + #$0D#$0A; Result := Result + Format('%s',[' EVR' + #$0D#$0A]); for I:=1 to 4 do begin Result := Result + Format('%20.16f ',[EVR[I-1]]) + #$0D#$0A; end; Result := Result + #$0D#$0A; Result := Result + #$0D#$0A; Result := Result + Format('%s',[' EVI' + #$0D#$0A]); for I:=1 to 4 do begin Result := Result + Format('%20.16f ',[EVI[I-1]]) + #$0D#$0A; end; Result := Result + #$0D#$0A; UtRes('TAEG2C',Result); { вывод результатов в файл TAEG2C.res } exit; end; end. Результаты: EVR(1) = 2.3227488 , EVR(2) = 0.2422607 , EVR(3) = 0.6382838 , EVR(4) = 0.79670669 , EVI = (0., 0., 0., 0.) , IERR = 0