Текст подпрограммы и версий ( Фортран ) agh1r.zip |
Тексты тестовых примеров ( Фортран ) tagh1r.zip |
Текст подпрограммы и версий ( Си ) agh1r_c.zip |
Тексты тестовых примеров ( Си ) tagh1r_c.zip |
Текст подпрограммы и версий ( Паскаль ) agh1r_p.zip |
Тексты тестовых примеров ( Паскаль ) tagh1r_p.zip |
Вычисление всех собственных значений в обобщенной проблеме собственных значений Ax = λBx для вещественных симметрических матриц A и B.
Данная подпрограмма реализует алгоритм вычисления всех собственных значений уравнения вида Ax = λBx, где A и B - вещественные симметpические матpицы и матpица В положительно определена.
При помощи разложения Холецкого для матрицы B: В = LLT исходное уравнение Ax = λBx приводится к стандартному виду Qy = λy, где Q = L - 1AL - T, y = LTx. Стандартная задача решается путем приведения симметрической матрицы Q к трехдиагональному виду и вычисления собственных значений λ при помощи QL - алгоритма со сдвигом.
Дж.Х. Уилкинсон, Алгебраическая проблема собственных значений, "Hаука", M., 1970.
SUBROUTINE AGH1R (A, B, EV, RAB, N, IERR)
Параметры
A, B - | вещественные двумерные массивы размера N на N, содержащие исходные матрицы; |
EV - | вещественный одномерный массив длины N, содержащий вычисленные собственные значения, расположенные в возрастающем порядке; |
RAB - | вещественный одномерный массив длины 2 на N, используемый как рабочий; |
N - | порядок исходных матриц (тип: целый); |
IERR - | целая переменная, служащая для сообщения об ошибках, обнаруженных в ходе работы подпрограммы; при этом значение IERR: |
- pавно 7*N+1, если исходная матрица B не является положительно определенной; - полагается равным номеpу собственного значения, для вычисления которого потребовалось более 30 итераций, при этом собственные значения с индексами 1, 2, ..., IERR - 1 вычислены правильно и расположены в возрастающем порядке, но они не обязательно являются меньшими из всех N собственных значений. |
Версии : нет
Вызываемые подпрограммы
UTAG10 - | подпрограмма выдачи диагностических сообщений при работе подпрограммы AGH1R. |
Замечания по использованию
Исходные матрицы A и B можно задавать в одноименных массивах лишь верхними треугольниками. Подпрограмма AGH1R сохраняет строгий верхний треугольник A и полный верхний треугольник B (остальные компоненты массивов A и B используются как рабочие). |
DIMENSION A(5, 5), B(5, 5), EV(5), RAB(10) DATA A /10., 4*0., 2., 12., 3*0., 3., 1., 11., 2*0., 1., 2., 1., 9., * 0., 2*1., -1., 1., 15./ DATA B /12., 4*0., 1., 14., 3*0., -1., 1., 16., 2*0., 2., 2*-1., * 12., 0., 3*1., -1., 11./ N = 5 CALL AGH1R (A, B, EV, RAB, N, IERR) Результаты: Собственные значения: | 0.4327872109 | | 0.6636627483 | EV = | 0.9438590046 | | 1.109284540 | | 1.492353232 | IERR = 0