|
Текст подпрограммы и версий ( Фортран ) de10r.zip , de10d.zip |
Тексты тестовых примеров ( Фортран ) tde10r.zip , tde10d.zip |
|
Текст подпрограммы и версий ( Си ) de10r_c.zip , de10d_c.zip |
Тексты тестовых примеров ( Си ) tde10r_c.zip , tde10d_c.zip |
|
Текст подпрограммы и версий ( Паскаль ) de10r_p.zip , de10e_p.zip |
Тексты тестовых примеров ( Паскаль ) tde10r_p.zip , tde10e_p.zip |
Вычисление решения задачи Коши для системы обыкновенных дифференциальных уравнений первого порядка в конце интервала интегрирования методом Mеpсона.
Решается задача Коши для системы M обыкновенных дифференциальных уравнений
Y ' = F (X, Y) ,
Y = ( y1, ... , yM ) ,
F = ( f1 (X, y1, ... , yM), ... , fM (X, y1, ... , yM) )
с начальными условиями, заданными в точке XN :
Y(XN) = YN , YN = ( y10, ... , yM0 ) ,
методом Mеpсона.
Решение вычисляется в одной точке XK, которая является концом интервала интегрирования. Каждая компонента решения вычисляется с контролем точности по относительной погрешности на тех участках интервала интегрирования, на которых модуль этой компоненты больше некоторого наперед заданного числа Р (это число называется границей перехода), и по абсолютной погрешности на остальных участках, т.е. там, где модуль проверяемой на точность компоненты меньше этого числа.
Дж.Н.Ланс, Численные методы для быстродействующих вычислительных машин, Изд-во иностранной литературы, M., 1962.
SUBROUTINE DE10R (F, M, XN, YN, XK, HMIN, EPS, P, H, Y, RA,
IERR)
Параметры
| F - |
имя подпрограммы вычисления значений правой
части дифференциального уравнения. Первый
оператоp подпрограммы должен иметь вид: SUBROUTINE F (X, Y , DY, M). Здесь: X, Y - значения независимой и зависимой переменных, соответственно. Вычисленное значение правой части должно быть помещено в DY. B случае системы уравнений, т.е. когда M ≠ 1, параметры Y и DY представляют массивы длины M (тип параметров X, Y и DY: вещественный); |
| M - | количество уравнений в системе (тип: целый); |
| XN, YN - | начальные значения аргумента и решения. В случае системы уравнений (т.е. M ≠ 1) YN представляет одномерный массив длины M (тип: вещественный); |
| XK - | значение аргумента, при котоpом требуется вычислить решение задачи Коши (конец интервала интегрирования). XK может быть больше, меньше или pавно XN (тип: вещественный); |
| HMIN - | минимальное значение абсолютной величины шага, который разрешается использовать при интегрировании данной системы уравнений (тип: вещественный); |
| EPS - | допустимая меpа погрешности, с которой требуется вычислить все компоненты решения (тип: вещественный); |
| P - | граница перехода, используемая при оценке погрешности решения (тип: вещественный); |
| H - | вещественная переменная, содержащая начальное значение шага интегрирования. Может задаваться с учетом направления интегрирования, т.е. положительным, если XK > XN, отрицательным, если XK < XN, или без всякого учета в виде абсолютной величины; |
| Y - | искомое решение задачи Коши, вычисленное подпрограммой при значении аргумента XK. Для системы уравнений (когда M ≠ 1) задается одномерным массивом длины M. В случае совпадения значений параметров XN и XK значение Y полагается равным начадьному значению YN (тип: вещественный); |
| RA - | одномерный рабочий массив вещественного типа длины 4*M. |
| IERR - | целая переменная, значение которой в результате работы подпрограммы полагается равным 65, если какая-нибудь компонента решения не может быть вычислена с требуемой точностью EPS. В этом случае интегрирование системы прекращается. При желании интегрирование системы можно повторить обращением к подпрограмме с новыми значениями параметров HMIN и H. |
Версии
| DE10D - | вычисление решения задачи Коши для системы обыкновенных дифференциальных уравнений первого порядка в конце интервала интегрирования методом Mеpсона с повышенной точностью. При этом параметры XN, YN, XK, HMIN, EPS, P, H, Y, RA и параметры X, Y и DY в подпрограмме F должны иметь тип DOUBLE PRECISION. |
Вызываемые подпрограммы
| UTDE10 - | подпрограмма выдачи диагностических сообщений при работе подпрограммы DE10R. |
| UTDE11 - | подпрограмма выдачи диагностических сообщений при работе подпрограммы DE10D. |
Замечания по использованию
|
Подпрограммы DE10R и DE10D предназначены для численного решения дифференциальных уравнений и систем уравнений с правой частью, имеющей непрерывные частные производные вплоть до 5 порядка включительно. Они являются эффективными для нежестких уравнений и систем уравнений с несложными правыми частями (т.е. не являющимися трудоемкими для вычислений). Хотя заданная точность EPS не гарантируется в общем случае, большой опыт эксплуатации данной подпрограммы убедительно показывает, что вычисляемое ею численное решение достаточно близко приближает точное решение. При работе подпрограммы значения параметров M, XN, YN, XK, HMIN, EPS и P сохраняются. Если после работы подпрограммы нет необходимости иметь начальное значение решения YN, то параметры YN и Y при обращении к ней можно совместить. При работе подпрограммы счета правой части F значения параметров X, Y и DY не должны изменяться. |
Использование подпрограммы иллюстрируется на примере:
y '1 = y2 ,
y '2 = -y1 , 3π/4 ≤ x ≤ π
y1(3π/4) = √2 / 2 , y2(3π/4) = - √2 / 2
Приводятся подпрограмма вычисления значений правой части и фрагмент вызывающей (основной) программы, а также результаты счета.
SUBROUTINE F (X, Y, DY, M)
DIMENSION Y(2), DY(2)
DY(1) = Y(2)
DY(2) = - Y(1)
RETURN
END
DIMENSION RA(8), Y(2)
EXTERNAL F
M = 2
XN = 0.75*3.14159265359
Y(1) = SQRT(2.)/2.
Y(2) = - Y(1)
XK = 3.14159265359
HMIN = 1.E-4
EPS = 1.E-5
P = 1.E-7
H = 1.E-2
CALL DE10R (F, M, XN, Y, XK, HMIN, EPS, P, H, Y, RA, IERR)
Результаты:
Y (1) = 0.4495909707 * 10-8
Y (2) = -0.9999999996
IERR = 0